OUR FINDINGS
Use the "Categories" list to search our library of 35 Findings.
A majority of all our growers have used organic matter inputs (manure, compost, mulches) on their sites in the last 5 years, with home gardeners leading the way. We only count the organic matter inputs which are acquired off-site in this analysis. Manure deposited by grazing animals on-site, or clippings from on-site cover crops, are not counted as organic matter inputs here. Thus, perennial fields with aftermath grazing often appear to have no organic matter inputs, even though they may have many days of grazing animals depositing manure and urine there.
0 Comments
These 4 graphs show that Home Gardens and Perennial Hay/Alfalfa/Pastures have the most variable soil health scores year-to-year. Each site’s 3-5 years of soil health scores are represented by a column of 3-5 colored data points connected by a vertical black line (a blue square for 2019, red circle for 2020, green triangle for 2021, yellow diamond for 2022 and aqua diamond for 2023). Each square-circle-triangle-diamond-Blackline combo represents the Soil Health Scores for one site for 3-5 years. Sites with the most variability have the tallest black lines between their lowest and highest scores.
Last year we showed that large amounts of organic matter inputs and more days of grazing animals increased variability. This year we have shown that home gardeners apply the highest rates of organic matter to their sites, and we know that grazing animals are usually found in pastures. It makes sense then that Home Gardens and Perennial Hay/Alfalfa/Pastures would experience the greatest variability in Soil Health Scores. We continue to see a great deal of variability in our lab results when we compare sites with themselves year-to-year. We divided our sites into 4 crop categories (Commercial Veg/Flower/Fruit; Commodity Row Crops and Dryland Grains; Home Gardens; and Perennial Hay/Alfalfa/Pastures) and examined each category’s variability. These 4 graphs show that an examination of past practices can often explain some of the exceptionally big jumps in variability which we see in every crop group.
There are significant differences between our sites with the most variable soil health scores (our Swingers) and our sites with the least variable scores (our Parked sites). The most significant difference between the 2 groups is that Swinging sites have 3 times the number of average grazing days as Parked sites. While Swinging and Parked sites have the same numbers of sites with grazing animals, Swinging sites have animals grazing on-site for a much longer period of time. 2/3rds of Swinging sites are pastures, and the majority of Swinging sites use conventional growing methods. Swinging sites also apply an average of 7.5 T/acre of organic matter inputs, almost 50% more than Parked Sites at 5.6 T/ac. These findings support our 2023 findings that more grazing animals and organic matter inputs increase variability.
For each of our 7 crop groups, we calculated their average use of 6 different parameters that effect soil health: days of supplemental irrigation water, days of living cover, tons of organic matter added, number of grazing days, their tillage intensity score, and their soil Ph.
We then examined those averages to see if we could predict which crop groups would have the lowest and highest soil health scores. The graphs above show the average soil health practices for all 7 crop groups. See if you can predict which crop groups will have the best and worst soil health scores, just by looking at their relative rankings on soil health practices. Remember that you are looking for HIGH water days, HIGH days of living cover, HIGH organic matter inputs and HIGH grazing days, but LOW tillage intensity and LOW soil pH to predict the highest soil health scores. It’s just the opposite for the lowest soil health scores. If you guessed that Dryland Grains would have the lowest average soil health scores, and that Trees, Wild Grasslands and Home Gardens would have the highest scores, you would hit the jackpot. Dryland Grains have no supplemental water, no organic matter inputs, the shortest days of living cover, and high pH, which all gang up to give the group some of the lowest soil health scores. Home Gardens have the most supplemental water available, huge organic matter inputs, very low tillage intensity and low soil pH, which raises them to the top. Although Grasslands and Trees have no supplemental irrigation water generally and no organic matter inputs, they have the most days of living cover, no tillage and the lowest soil pH, so they do very well too. The chart below has the average soil health scores of each of our 7 crop groups, for Soil Organic Matter, Soil Respiration, Organic Nitrogen, Organic Carbon, Soil Health Score, Total Microbial Biomass, and Number of Fungi.
Please remember that the numbers in these tables and graphs are averages, a mathematical construct. There is no grower named “Average”, nor a field called “Average”. We are talking about an imaginary mathematically constructed “average” site in these tables and charts. Our real world is much more varied and complicated. Most of the sites in the CSSHP fall into 3 main crop categories: Perennial Hay/Alfalfa/Pasture, Commodity Row Crops and Commercial Veg/Flower/Fruit. See if you can predict their relative soil health scores just by looking at their soil health practices.
Perennial Hay/Alfalfa/Pastures: The Pasture group has the highest average soil health scores of these three crop groups. Although the Pasture group has lower supplemental water days and lower organic matter added, their very high days of living cover and very high grazing days, along with their very low tillage intensity and lower soil pH seem to more than make up for their water challenges, in terms of soil health.
Commodity Row Crops: The Commodity crop group has the lowest average scores of these three groups. Although they have done an excellent job of reducing their tillage intensity, that fact alone cannot make up for their high soil pH, lowest days of living cover and lowest organic matter added. They have only 2/3rds of the water availability as the Commercial Veg/Flower/Fruit group, which explains their lower days of cover crops that often require fall seeding and fall water. Inter-seeding cover crops aerially or when the main crop is still small are work-arounds but not always practical. Low commodity prices mean the cost of additional organic matter inputs like compost and manure are hard to justify. Commercial Veg/Flower/Fruit: The Commercial Veg group has the highest tillage intensity by far, but also triple the organic matter inputs of the other 2 groups. These huge organic matter inputs, along with their longer water season, greater use of cover crops, and lower soil pH overpower their intense tillage and boost their average soil health scores above the commodity crops’ averages. Their longer water season means they can plant more fall cover crops and string together succession plantings for a longer growing season. Their high value vegetables mean that they can afford organic matter input costs and hauling fees. In the top graph above, 71 sites with both grazing animals and organic matter inputs (OMI) are each represented by a quadruplet of data points connected by a vertical black line (a blue square for 2019, red circle for 2020, green triangle for 2021, and yellow diamond for 2022). Each square-circle-triangle-diamond-black-line combo represents the Soil Organic Matter (SOM) values for one site for 4 years. According to the literature, SOM is supposed to be quite stable and very difficult to change, and yet we are seeing large swings in individual sites’ SOM data, especially when grazing animals are present or organic matter is imported to the site, as is the case in the top graph above.
We only have 12 sites in our study which have no grazing animals or imported organic matter for 3 or more years. The second lower graph shows that the variability in SOM values for these 12 sites is much less than for sites with grazing animals or organic matter inputs. We sorted our sites into 3 groups and calculated the average variability for each group. This bar graph shows that the groups which grazed animals or added organic matter to their sites for 2 consecutive years have approximately three times as much variability in their lab results as the group with NO grazing animals and NO organic matter inputs.
|
AuthorElizabeth Black is the producer of the Citizen Science Soil Health Project Archives
March 2024
Categories
All
|